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Polar, cylindrical, and spherical coordinates

Part 1
Notes

1 Polar coordinates

Polar coordinates are great for describing:

e Circles centered at the origin.
e Lines passing through the origin.

e Circles passing through the origin.

To go from rectangular coordinates to polar coordinates, we use the formulas

r= /$2+y2

6 = arctan(y/x)

To go from polar coordinates to rectangular coordinates, we use the formulas

x = 7rcosb

y=rsinf

The Jacobian for this coordinate system is given by

ox Oz

ar a6 | cos) —rsinf)
det % % _det<sin9 rcos@>_r

or 06

1.1 Circle centered at the origin

A circle of radius ¢ centered at the origin has equation r = ¢. Hence the interior
is described as

0
0

r

0

C

<
<27

<
<

Note: 6 goes from 0 to 2w, but any interval of length 27 would work. For
example —m < 0 < 7.



Polar, cylindrical, and spherical coordinates

1.2 Angular sections

A line passing through the origin has rectangular equation y = ma, where m is
the slope. In polar coordinates, its equation is

0 = arctan(m)
The space between the lines with slopes m; and mo with m; < ma, is given by
arctan(ms) < 0 < arctan(ms)

Note: the function arctan is not actually a function because there are pairs of
angles with the same tangent. To successfully apply the above formulas, double
check that your result coincides with what you actually want to describe. If
not, you may need to replace arctan by arctan 4.

1.3 Circles passing through the origin

A circle passing through the origin has equation
(x—a)’+(y—b?*=c

where (a,b) is the center of the circle, c is the radius, and a® + b* = ¢* to
guarantee it passes through the origin. Expanding this, we get

22 +y% — 2ax — 2by + a® + b = &2
Cancelling a? + b® = ¢?, and writing « and y in terms of r and 0, we get
72 — 2ar cos§ — 2brsinf = 0

Dividing over r, we get
r = 2acosf + 2bsin 6

Therefore, the description of the interior of the circle in polar coordinates is
given by

arctan(b/a) — /2 < 6 < arctan(b/a) + 7/2
0<r<2acosf+ 2bsinb

2 Cylindrical coordinates

Cylindrical coordinates are great for describing:

e Vertical cylinders centered at the origin.

e Vertical planes passing through the origin.



Polar, cylindrical, and spherical coordinates

To go from rectangular coordinates to cylindrical coordinates, we use the same
formulas as in polar coordinates

r=/a? g2
0 = arctan(y/z)

Z=Z

To go from cylindrical coordinates to rectangular coordinates, we use the for-
mulas

T = rcosf
y =rsinf
z=2z

The Jacobian for this coordinate system is given by

Jdr OJxr Ox
?5 379/ 375 cosf —rsinf O
det | =2 ZZ2 2| =det|sinf rcosf 0] =r
o3 ¥ o 0o 1
ar 00 0z

2.1 Vertical cylinder centered at the origin

A vertical cylinder of radius ¢ centered at the origin has equation r = ¢. Hence
the interior is described as

0<r<ec
0<0<2m

—00 < 2z <00

2.2  Vertical plane passing through the origin

In rectangular coordinates, a vertical plane passing through the origin has equa-
tion ¥y = ma. In cylindrical coordinates, its equation is

0 = arctan(m)



Polar, cylindrical, and spherical coordinates

3 Spherical coordinates

Spherical coordinates are great for describing:

e Spheres centered at the origin.
e Vertical cones with tip at the origin.

e Spheres with center in the z-axis and passing through the origin.

To go from rectangular coordinates to spherical coordinates, we use the following
formulas

p= /l‘2+y2+22

6 = arctan(y/x)

¢ = arctan ((\/ x? + 22) /z)

To go from spherical coordinates to rectangular coordinates, we use the formulas

x = pcosfsind
y = psinfsin ¢
Z = pcoso

To get the Jacobian, we compute

gp ge g¢ cosfsing —psinfsing pcosfcoso

det 87y a—g a—z =det | sinfsing pcoshsing psinfcosep | = —p?sing
(,lg 9z 0= cos ¢ 0 —psing
dp 00 0¢

Since the Jacobian is non-negative, we just consider the absolute value. This
means the Jacobian of the spherical change of coordinates is

p*sin ¢
3.1 Sphere centered at the origin

A sphere of radius ¢ centered at the origin has equation p = ¢. Hence the interior
is described as



Polar, cylindrical, and spherical coordinates

3.2 Vertical cone with tip at the origin

In rectangular coordinates, a vertical cone with tip at the origin has equation
z = m+/x? + y2. In spherical coordinates, this equation becomes

¢ = arctan(1/m)
The region above the cone is given by
0 < ¢ < arctan(1/m)
The region below the cone is given by

arctan(l/m) < ¢ <m

3.3 Sphere centered in the z-axis and passsing through
the origin

A sphere passing through the origin and centered in the z-axis has equation
x2+y2+(z—c)2:c2
Expanding this, we get
22 +y? 4 2% =22
Putting this in terms of p and ¢, we get
p* = 2cpcos ¢
Dividing over p, we get
p = 2ccos ¢
Therefore, the description of the interior of the sphere is
0<0<2m
0<¢<7/2
0<p<2ccoso

ifc>0,and
0<0<2m
m/2<¢<m
0<p<2ccos¢
if ¢ <O.



Polar, cylindrical, and spherical coordinates

4 Exercises on polar, cylindrical, and spherical
coordinates

Exercise 1 Compute the following integral

3 V9—x2
/ / (x2 + y2) dydzx
o Jo

The restrictions

represent the region in the first quadrant and inside the circle of radius three.
Those restrictions in polar coordinates become

0<6<m/2
0<r<3

The integrand is z° + 2, which in polar coordinates becomes r2. When we pass
to polar coordinates, we multiply the integrand by the Jacobian, which is r.

The integral becomes
/2
/ / 3 drdf
Computing it, we get [r/2] [3'/4] = 817/8.

Exercise 2 Compute the following integral

2 pd—y? a4yt
/ / / zdzdxdy
—2Jo 0

-2<y<2

0<z<\4—1y?

O§z§x2+y2

The restrictions

represent the region above the zy-plane, below the paraboloid z = z? + 32,
on the side of the yz-plane with positive x-coordinate, and inside the cylinder
2?2 + y? = 2 of radius 2. In cylindrical coordinates, these restrictions become
—7m/2<0<7/2
0<r<?2
0<z< r?



Polar, cylindrical, and spherical coordinates

The integrand is already in terms of the coordinates r,0,z. By passing to
cylindrical coordinates, we multiply the integrand by the Jacobian, which is r.

The integral becomes
/2 2 2
/ / / zr dzdrdf
x/2Jo Jo

/ " / "\ drdd = ) [2/4] — dm

w/2J0

Solving it, we get

Exercise 3 Compute the following integral

Vi—z? 16— 12,y
/ / / 2(z? + y?) dzdydx
3z2+3y

The restrictions

0<z<2
z<y<Vi— a2
V322 4 3y2 < 2 < /16 — 22 — 3?2

describe the region..... maybe it is too difficult to see directly, so first look at the
restrictions on x and y. They represent the region in the first quadrant above
the line y = z and inside the circle of radius 2. This means

0<r<2
m/4<0<m/2

The restrictions on z correspond to the region above the cone z = v/3y/z2 + y2
and inside the sphere 22 +y? + 2% = 16. In sphereical coordinates, this becomes

0<p<4
0<¢p<m/6
The integrand was z(a:2+y2), which in spherical coordinates becomes p? cos ¢ sin? ¢.

When we pass to spherical coordinates, we multiply the integrand by the Jaco-
bian, which is p? sin ¢. Then the integral becomes

/2 p2 /6
/ / / p° cos ¢ sin® ¢ dodpdh
7r 0 0

= [r/4] [2/6] [sin*(7/6)/4] = 37 /8.

Solving it we get

10



Polar, cylindrical, and spherical coordinates

Exercise 4 Compute the following integral

z
[, v

where B is the interior of the ball z* + y* + (2 — 2)* = 4.

The restrictions corresponding to B in spherical coordinates are

0<0<2m
0<¢<m/2
0<p<4cos¢

The integrand in terms of spherical coordinates becomes p cos ¢/ p* = cos o/ p.
When we pass to spherical coordinates, we multiply the integrand by the Jaco-
bian, which is p®sin ¢. Then the integral becomes

27 pm/2 pdcos¢
/ / / pcos ¢sin ¢ dpdpdf
o Jo 0

Solving, we get

/2
= [277]/0 [(4 cos ¢)2/2] cospsinpdp = 4w [0054(0) - cos4(7r/2)] =4r

11



General change of coordinates

5 wv-substitution

Just like we use polar, cylindrical, and spherical integrals to solve integrals, we
can use any other coordinate system. For simplicity, we restrict ourselves to
dimension 2, but the concepts make sense in any dimensions.

If we write  and y in terms of the coordinates v and v, and vice-versa, the
Jacobian of this change of coordinates is given by the absolute value of the
determinant of the matrix of partial derivatives.

0z oa
% %
o v

3z
—dxdy
//R 4

where R is the region in the first quadrant between the hyperbolas y = 1/x and
y = 5/x, and between the lines y = /3 and y = 2.

Exercise 5 Compute

We can rewrite the restrictions as

W= =
A IA
8l O
IN A
ORI

Hence if we introduce the variables

U= zy
vi=y/x
the restrictions become
1<u<b
1
—<ov<2
3

Then we need to write  and y in terms of the new variables:

12



General change of coordinates

To get the Jacobian, we need the partial derivatives

or 1 1
ou 2 JVw
or 1 u
w2
dy 1 v
ou 2 Vau
dy 1 Vu
IR

Then the Jacobian is the absolute value of

1 1 1 Vu

2 Juww 2 3 171 1 1
det 2 uv 2 VU o4+ ==

Ly Lve [ Tal T T

2 Vu 2

The integrand in terms of the new variables is

3z 3u

4 4

— dvd
/ / s 4[ 9 Y
Solving, we get

[ = v [

ool ()

-t

/ / 9y dxdy
R

Then the integral becomes

Exercise 6 Compute

where R C R? is the parallelogram with vertices (—3,1), (0,—1), (3,0), (0,2).

13



General change of coordinates

The sides of the parallelogram are the lines

X

T
¥=3

x
=—-42
Y 3+

2x
=2
y=73

2z
=——+2
Y 3 +
Then the parallelogram can be described as
x
—-1<y— =<2
Y 3=
2
-1<y+ g <2

If we introduce the variables

u:=3y—z

v =3y + 2z
the bounds above become

-3<u<6

-3 6

Then we need to write x and y in terms of u and v. This is done by solving a
linear system.

. v—u
3
v+ 2u
9
The Jacobian is the absolute value of the determinant
or 0 1
Ju Ov 3 3 1 1
det = det = _—(-1-2)=—=
dy Oy g 1 27 9
ou Ov 9 9

The integrand written in terms of the new variables is 9y = v + 2u. Then the

integral becomes
6 6 1
/ / (v+ 2u) [} dudv
_3.J_3 9

6 6 1 81
:/)mw+2/ udu = ~[6% — 3% +2(6% — 3%)] = —
-3 -3 2 2

Solving, we get

14



Curves and line integrals of scalar functions

6 Curves

A curve is a continuous function v : [a,b] — R? from an interval to the plane or
space. It also corresponds to three continuous functions

V() = (x(t), y(t), 2(1))

which can be interpreted as a change of variables. It can be used to model:

e A curved object in the plane or space like a wire or a fence.

e A particle moving around. The coordinates (x(t),y(t), z(t)) represent the
position at time ¢.

Sometimes, we call the image of v the curve (the object in the plane or space),
and call v the parametrization.

The derivative
V() = ('), ¥/ (1), 7' (1)
is called the velocity. Under the second interpretation, the direction of 4'(¢) is

the direction in which the particle is moving at time ¢. The length |y/(¢)] is the
speed in which the particle is moving at time ¢.

The Jacobian of this change of variables is

Jacobian(y) = |7/ (1) = v/(2'(t)? + (¥ (1))* + (' (1))?

Using this, the length of a curve is defined as

b
mmmww=/|¢wMt

7 Line integrals of scalar functions

Definition 1. Let C C R? be a curve, v : [a,b] — R3 a parametrization of C,
and f:R?® — R a continuous function. The integral of f along C is defined as

b
Afwzlfmmwww

If f(y(¢)) > 0, the integral above can be interpreted as the mass of a wire with
shape C and density f.

Note: the above integral is independent of the parametrization, and in partic-
ular does not depend on the direction in which the curve is travelled by the
parametrization. Later we will consider line integrals of vector fields. They will
change sign if we travel the curve in the opposite direction.

15



Curves and line integrals of scalar functions

8 Exercises on curves and line integrals

Exercise 7 Find the curve of intersection of the surfaces y = 2> and z = 2.

We are looking for a curve

The condition y = 2 establishes that whatever we use for z(t), then y(t) is
going to be the square of that. The condition z = 2 establishes that whatever
we use for z(t), then z(t) is going to be the cube of that. Using these restrictions,
we can write

This yields
with —oc0 <t < 0

Exercise 8 Find the curve of intersection of the surfaces (xz—2)*+(y—3)* = 4
and x +y+z=0.

We are looking for a curve

that goes around the intersection of the surfaces, which is an ellipse because it
is the intersection of a cylinder with a plane. In the equation of the plane, we
can isolate each variable in terms of the others. This means that once two of
x(t), y(t), and z(t) are defined, the other will be defined in terms of the other
two. The cylinder (z — 2)? + (y — 3)® = 4 has center (2,3) and radius 2, so to
guarantee a curve winds around we can define

x(t) =2+ 2cost
y(t) =3+ 2sint

From the equation of the plane we get z = —x — y, so
2(t) = —z(t) —y(t) = =5 — 2cost — 2sint
Then the curve is

v(t) = (2+ 2cost, 3+ 2sint, —5 — 2cost — 2sint)

16



Curves and line integrals of scalar functions

with 0 <t <27

Note: using similar logic, a good idea would be to instead take the curve

() = (24,3 + VA2, -5 —t — /41— 12)

with —2 <t < 2. However, this curve would only cover half of the ellipse.

Exercise 9 Find the tangent line to the curve y(t) = (tcost,tsint,t) at the
point (—m,0,7). Find the speed of the curve when it is passing through that
point.

To answer both questions, we need to identify the velocity
~'(t) = (cost — tsint,sint + tcost, 1)

We also need to identify when the curve passes through that point. By looking
at the third coordinate, we see that it is at ¢ = w. At that time, the velocity is

'7/(71—) = (_1 -0,0—m, 1) = (_]-a -, 1)
Then the line tangent to the curve at the point (—m,0,7) is
a(t) = (—m,0,7) + t(—1, —m, 1)

The speed at time t = 7 is given by |/ (7)| = V72 + 2

Exercise 10 Find the tangent line to the curve y(t) = (t* + 1,3t + 1,t — t?)
at the point (5,7,—2). Find the speed of the curve when it is passing through
that point.

To answer both questions, we need to identify the velocity
V(1) = (26,31 - 2t)

We also need to identify when the curve passes through that point. By looking
at the third coordinate, we see that it is at ¢ = 2. At that time, the velocity is

7'(2) = (4,3,-3)
Then the line tangent to the curve at the point (5,7, —2) is
Ck(t) = (57 77 _2) + t(47 37 _3)

The speed at time t = 2 is given by |7/(2)] = V16 +9+ 9 = V34

Exercise 11 Compute the length of the curve y(t) = (cost,sint,t) with 0 <
t<A4drm

17



Curves and line integrals of scalar functions

The length is the integral of the speed. We compute
7' (t) = (—sin(t), cos(t), 1)
' (6)] = V2

Then . .
length(vy) = / |7/ (t)| dt = V2dt = 4wv/2
0

0

Exercise 12 Compute the length of the curve y(t) = (24t —t3/3,t>+3) with
0<t<2

The length is the integral of the speed. We compute
V() = (1—1%2t)
V) =vV0 =22+ 22 =vV1-22+t*+42 = /A +2)2 =1+

Then

2 2
length('y):/ |7’(t)|dt:/ (1+t%)dt=2+2%/3=14/3
0 0

Exercise 13 Assume a wire has the shape of a curve C' C R® with parametriza-
tion 7 : [0,1] — R? given by
(1) = (¢, 2t,8%)

Further assume it has density given by p(x,y,z) = 16z + 10xy + 4y. Find its
mass.

The mass is the integral of the density. To find the Jacobian, we compute
7 (t) = (2t,2,3t%)
V()] = V4 + 482 + 94

The integrand p = 16z + 10xy + 4y under the substitution

x =t
y =2t
2=t

becomes
p(t) = 16t° + 20> + 8t = 36t + 8t

18



Curves and line integrals of scalar functions

The integral then becomes,

/C pds = / Lo 0] di

1

:/ (8t + 36t%)\/4 + 412 + 9t4
0
17

= Vudu

4

2
- [\/173 - 23}
3
where we used the substitution u = 4 + 4¢% + 9¢3.

Exercise 14 We are building a fence whose shape is the curve C' C R? with
parametrization (t) = (2sint,3cost) with w/4 <t < 7/2. Assume the cost of
building at the point with coordinates (x,y) is given by f(x,y) = 200xy dollars
per meter. What is the cost of building the fence?

The total cost is the accumulation of f along the trajectory . In other words,

the integral
/ fds
C

To compute it, we need the Jacobian, which we obtan by
7' (t) = (2cost, —3sint)
|v' ()] = Vdcos2t + 9sint = V4 + 5sin®¢

The integrand f(z,y) = 200zy in terms of ¢ becomes
f(t) = 1200 costsint

Then the integral becomes
/2
/ fds= / (1200 cos t sint)\/ 4 + 5sin? t dt
C w/4

With the change of variables u = 4 + 5sin®t, we get u' = 10sint cost, and

4+5
/fd5:/ 120v/u du
C 4

+5
9 3

=80 2 Vudu
13/2

= 80 {27 - \/@3}

19



Surfaces and surface integrals of scalar functions

9 Surfaces

A parametrized surface is a map ¢ : U — R? with U C R? a region in the plane.

Sometimes, we call the image of ¢ the surface (the object in the space) and call
o the parametrization.

Example 1. The graph of a function f(z,y) of two variables, is the set {(z,y, z) €
Rz = f(z,y)}. Tt admits the parametrization ¢ : R* — R? given by

@(uvv) = (ua U, f(u,v))

Example 2. The cylinder 22 +4? = 1 is a surface that admits the parametriza-
tion ¢ : [0,27] x R — R? given by

o(u,v) = (cosu, sinu, v)

Example 3. The sphere z°+y?+2? = 1 is a surface that admits the parametriza-
tion ¢ : [0,27] x [0, 7] — R? given by

o(u,v) = (cosusinv, sinusin v, cos v)

Example 4. Assume a plane curve 7 : [a,b] — R? given by v(t) = (71(t),72(t))
satisfies 773 > 0. We can rotate it around the vertical axis to get a surface of
revolution. This surface admits the parametrization ¢ : [0,27] x [a,b] — R?
given by

e(u,v) = (71(v) cosu, 71 (v) sinu, 72(v))

The Jacobian of the parametrization of a surface ¢ : U — R? is given by

¢

Jacobian(p) = ‘Z—i i

Using this, the area of the surface is given by
Jdp Oy
= — X — | dud
avea() //U‘au X 8u’ uaw

10 Swurface integrals of scalar functions

Definition 2. Let ¥ C R? be a surface, p:U— R? a parametrization of X,
and f :R® — R a continuous function. The integral of f over ¥ is defined as

J[ 1as = [[ ftotwop|GE x 32 dude

20



Surfaces and surface integrals of scalar functions

If f(o(u,v)) > 0, the integral above can be interpreted as the mass of a thin
metal sheet with shape ¥ and density f.

Note: the above integral is independent of the parametrization. Later we will
consider surface integrals of vector fields. They will change sign if we change
the orientation of the parametrization we use.

Exercise 15 Let ¥ C R® be the portion of the paraboloid z = 4 — x? — 12
above the xy-plane. Find the area of ¥

Inspired by cylindrical coordinates, we can use the parametrization ¢ : [0, 2] x
[0,27] — R? given by

©(r,0) = (rcosf,rsinf, 4 — r?)

Then
g—f = (cosf,sinf, —2r)
8—5 = (—rsinf,rcosb,0)
Taking cross product,
0 0
8;? X 6—? = (2r% cos 0, 2r?sin 6, )

Then the Jacobian is

Jacobian(p) = ‘%ﬁj X ?’Ti’ — T\/m

Then the area is

2 2m
area(p) = / ry/4r2 4+ 1 dfdr
0 Jo

17 4
=27 —Vudu
1 8

-3 o]

ST - 1)

where we used the substitution v = 472 + 1 with «/ = 8 and 1 < u < 17

Exercise 16 Let X C R? be the portion of the sphere z° + y? + 2% = 1 above
1
the cone z = ﬁ\/:ﬁ + y2. Find the area of ¥ and its average height.

21



Surfaces and surface integrals of scalar functions

Inspired by spherical coordinates, we can use the parametrization ¢ : [0, 27] x
[0,7/3] — R? given by

©(u,v) = (cosusinv, sinusin v, cos v)
Then

0 L .
a—w = (—sinusinv, cosusinv, 0)
u

dp . .
— = (cosu cos v, sinucosv, — sinv)
Ov

Taking cross product,

830 dp

30 % B0 = (— cosusin® v, — sin usin® v, — sin v cos v)
u v

Then the Jacobian is

9y
or

27
area(y / / sin v dvdu
os(

0) — cos(m/3))

Jacobian(p) = —‘ = sinv

Then the area is

= C

=T

Note that the height of the point ¢(u,v) is given by the third coordinate, which
is cosv. To compute the average, we integrate this quantity and divide over the

area:
27
// zdS = / / cos v sinv dvdu

=27 [2(5111 (m/3) — sin?(0))
= 3n/4.

Then the average height is given by

{ / /Z zdS} Jarea(ip) = 3/4

Exercise 17 Let ¥ C R? be the portion of the cone z = /2 + y2 between

the cylinders x> + y*> = 1 and 2® +y* = 9. Find the area of .. Assume a metal
2

sheet with this shape has density p(z,y,z) = e . Find its mass.

22



Surfaces and surface integrals of scalar functions

Inspired by spherical coordinates, we can use the parametrization ¢ : [1,3] x
[0,27] — R? given by

o(u,v) = (ucosv,usinv, u)

Then
0
a—:j = (cosv,sinv, 1)
0
8—f = (—usinv,ucosv,0)
Taking cross product,
0 0
8—(5 X a—f = (—ucosv, —usinv, u)

Then the Jacobian is

Jacobian(p) = ’g—f X g—? = uV/?2

Then the area is

3 27
area(cp):// uV?2 dvdu
1 Jo

1

= 2m( (3~ 1)

=812

The mass is given by the integral

//EpdS:/IB/O%[e"Q][u\@] dvdu
1

=21—(e” —¢)

V2
= 71v2(e? —e)

11 Surfaces with multiple pieces

Some surfaces cannot be nicely covered by a single parametrization. It is com-
mon to need more than one parametrization.

Exercise 18 A metal sheet has shape Y., where Y. consists of the portion of
the cylinder x> + 3> = 4 between the planes © + 1y + z = 0 and z = 3, and the
portion of the sphere x> +1* + (z—?))2 = 4 above the plane z = 3. It has density
p(x,y,z) =5 — z. Find its mass.
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Surfaces and surface integrals of scalar functions

Inspired by cylindrical coordinates, for the cylinder part we can use the parametriza-
tion ¢ : U — R3 given by

o(u,v) = (2cosu, 2sinu, v)
with U given by the restrictions

0<u<2m

—2cosu — 2sinu <v <3

The derivatives of ¢ are given by

g—i = (—2sinu,2cosu, 0)
Iy
— =(0,0,1
av ( ? )
Then the Jacobian is given by
dp Op| _
ou " Bl =7

Then the integral over this piece becomes

2m 3
/ / (5 —v)2 dvdu
0 —2cosu—2sinu
2

= / [5(3 +2cosu + 2sinu) — 9 + (2cosu + 2sinu)?] du
0

27
= 30r — 187 + 4/ (cos? u + sin® u + 2 cos usinu) du
0
=207
Inspired by spherical coordinates, for the sphere part we can use the parametriza-
tion ¢ : [0,27] x [0,7/2] — R? given by
P(u,v) = (2cosusinw, 2sinusinv, 3 4+ 2 cosv)

The derivatives of ¥ are given by

o

5=
0y
S

(—2sinusinv, 2 cosusinw, 0)
= (2cosucos v, 2sinwucosv, —2sinv)

Then the Jacobian is given by

o K
ou  Ov

= 4sinv
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Then the integral over this piece becomes

27 /2
/ / (5—3—2cosv)(4dsinv) dvdu
o Jo

w/2
= 167r/ (1 — cosv)sinvdv
0
= 8r

Then the total mass is
207 + 87 = 287
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12 Vector fields

A planar vector field is a function F : D — R? with D C R? a region we call
the domain of F.

A space vector field is a function F : D — R3 with D C R? a region we call the
domain of F'.

A vector field in general corresponds to having a vector at each point. These
are really good to model:

e Force fields.
e Electromagnetic fields.
e Motions of fluids and wind.

e Ordinary differential equations.

You can draw vector fields on Desmos:

https://www.desmos.com/calculator/eijhparfmd

13 Flows

Given a planar vector field F' : D — R? a flow line is a differentiable curve
v : [a,b] = D with
V() = F(y(t))

for all ¢t. This means that v models a particle that at each time, its velocity is
the vector provided by F' at its position.

You can create animations of flows of planar vector fields using the following:

e Clic on the following link:
https://drive.google.com/file/d/1e6GniqFvsR _vx6HhRw0y3NhjV37TWHVMF /view?usp=sharing

Copy that code in your cliboard

e Go to the following website:

https://animg.app/playground
e Paste the code in the text box and render (can take a couple of minutes).
e Edit the vector fields on lines 24-28 and render again.

e The free version of Animg only has three free renders per day, so do this
with your friends.
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Vector fields, curl, and divergence

Flows of space vector fields are defined analogously.

Theorem 1. Let F' : D — R? be a smooth vector field. Then for any point
p € D there is a unique flow line of F' that starts at p. The same is true for
space vector fields.

14 Curl

The curl of a vector field, measures how much rotation (swirl) is generated by
its flow. This is measured in very distinct ways in the plane and in the space
because angular momentum is encoded in the plane by a scalar and in the space
by a vector.

14.1 2D curl

In the plane, rotation is simply either clockwise or counterclockwise.

Definition 3. The curl of a planar vector field

F(x,y) = (P(x,y), Q(z,y))

is given by
curl(F) = g—g - 88—];

e The curl of a vector field F' at a point p is positive if its flow generates
counterclockwise swirl near p.

e The curl of a vector field F' at a point p is negative if its flow generates
clockwise swirl near p.

Example 5. The vector field F(x,y) = (—y/2,x/2) generates a strong coun-
terclockwise swirl and its curl is given by

curl(F) =1

Example 6. The vector field F(z,y) = (x/2,y/2) generates a strong flow, but
does not generate any rotation. Hence its curl is

curl(F) =0

14.2 3D curl

In the space, rotation (angular momentum) is encoded by a vector. The angular
momentum of a rotation is a vector v such that:
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Vector fields, curl, and divergence

e the direction of v is the axis of rotation.
e the length of v is the speed of rotation.

e looking back at the object from the tip of v, we see it spinning counter-
clockwise.

Definition 4. The curl of a space vector field
F(z,y,2) = (P(2,y,2),Qx,y, 2), R(z,y, 2))

is given by
_JOR 0Q OP OR 0Q 0P
CulF) = (5 = 552z ~ oz o5 ~ y)

This formula is somewhat hard to remember, but if we consider the abstract
vector 5 9 8
V = <77 a 7>7
ox’ dy’ 0z

Curl(F) =V x F

then

becomes just a cross product.

Example 7. The vector field F(z,y,2) = (—y/2,2/2,0) generates a strong
swirl around the z-axis. Its curl is given by

Cwl(F) = (0,0,1)

Example 8. The vector field F(x,y,z) = (0,—z/2,y/2) generates a strong
swirl around the z-axis. Its curl is given by

Cwl(F) = (1,0,0)

Example 9. The vector field F(z,y,2) = (x/2,y/2,2/2) generates a strong
flow, but does not generate any rotation. Hence its curl is

Cwrl(F) = (0,0,0)

15 Divergence

The divergence of a vector field at a point measures how much the vector field
is pointing away from that point.

Definition 5. The divergence of a planar vector field

F(x,y) = (P(x,y), Q(z,y))

is given by
. oP 0Q
dv(F) =50+ 5,
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Definition 6. The divergence of a space vector field

F(z,y,2) = (P(2,y,2),Q(x,y,2), R(z,y, 2))
is given by

. oP 0@Q OR
le(F):%ﬁ-aiy"‘%

Even though the divergence formula is quite simple, it can be simplified more
as as dot product:
div(F)=V - F

Example 10. The vector field F(z,y) = (—y/2,x/2) generates a strong coun-
terclockwise swirl, but the flow lines are just rotating around. Its divergence
is

div(F) =1

Example 11. The vector field F(z,y) = (x/2,y/2) generates a strong flow that
is blowing-up away from each point. Its divergence is

div(F) =1

16 Conservative vector fields

Definition 7. A vector field F : D — R? is conservative if it is the gradient of
a function f: D — R. In such a case, the function f is called a potential of F'.

Theorem 2. A smooth conservative vector field F' has no curl.

Proof 1In the plane, a conservative vector field is

_(9f of
Then its curl is
_99f 909f
curl (F) = Jdr dy Oy Ox
B 0*f 7 0*f
© O0x0y  Oyox

=0
In the space, a conservative vector field is

of of of
F(iL’,y,Z) = <%787ya$>
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Then its curl is

Curl(F)

<ﬁﬂ_ﬁﬂ 99f 909f ﬁﬁ_ﬁﬁ>
Oydz 020y 0z0x 0Oxdz 0xdy Oyox
<82f L F o a2f>
Oydz 0z0y 0z0x  9x0z’ Oxdy  Oydx

= (0,0,0)

Remark 1. There are non-conservative vector fields with no curl. For example,

F(fv,y):< = & >

x2+y2’x2+y2

has zero curl, but it is not conservative. The main issue is that (0,0) is not in
the domain of F'.

Theorem 3. If F': D — R? is a planar smooth vector field with
curl(F) =0

and D has no holes, then F' is conservative.

Technically, “having no holes” can be defined in terms of curves: any closed
curve in D can be continuously deformed within D to a single point within D.
For example, the domain of

Fla.y) = (= =)

1’2+y27$2+y2

is R\ {(0,0)}, which contains the unit circle, a curve that cannot be continu-
ously deformed to a single point within D. It is like having a rubber band stuck
around a pole.

17 Exercises on vector fields

Exercise 19 Consider the planar vector field
F(z,y) = (e® cosy,siny + 22)

Find its curl, divergence, and determine whether it is conservative or not. If it
is conservative, find a potential function.

The curl can be computed as
0 0
curl(F) = %(siny +2?) — a—y(e“ cosy)

=2x +e“siny
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For the divergence,

0 3}
div(F) = £(e’c cosy) + a—y(siny + %)

= e cosy + cosy

Since the curl is not zero, F' is not conservative.

Exercise 20 Consider the planar vector field
F(z,y) = (y° — 2°,2zy)

Find its curl, divergence, and determine whether it is conservative or not. If it
is conservative, find a potential function.

The curl can be computed as

0 0
curl(F) = =~ (2zy) - afy(?f —a7)
=2y—2y

For the divergence,

0 0
div(F) = =—(y? — 2%) + =— (2=
(F)=5-(y ) ay( y)
=2+ 2z
=0
Since the curl is zero, and F' is defined everywhere, it is conservative. To find
the potential function, we perform some “partial integration”:

of

o _ 2 2
Ox y -z
of

Y9

Ox i

We get

fla,y) = 2y® — 23+ a(y)
f(z,y) = 2y + b(x)

Matching terms, we get

flz,y) =ay>—2*/3+C
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Exercise 21 Consider the space vector field

F(z,y,2) = < Y z z>

x2+y2’x2+y2’

Find its curl, divergence, and determine whether it is conservative or not. If it
is conservative, find a potential function.

Before we compute the curl and divergence, we find the partial derivatives

oP _ 2wy
dx (22 4 y?)?
or _y-a?
oy x2+y?
oP
— =0
0z
Q _y*—a?
or a2+ 12
Q_ 2y
oy (z2 +y?)2
0Q
2
0z
OR
=t
ox
OR
=t
dy
OR
el |
0z
The curl is
2 2 2 2
Curl(F) = <O 07 0 0’ 2 + y2 72 + y2>
== <Oa 07 0>
The divergence is
2xy 2xy

div(F) +1

= (22 + 42)2 - (22 + 12)2
=1

The curl is zero, but F is not defined along the z-axis, where 22 + y? = 0. We
will see later that F' is not conservative.
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18 Oriented curves

An oriented curve is a curve with a choice of direction. Each curve has two
orientations: forward and backward. A parametrization of an oriented curve is
a parametrization that travels the curve in the correct direction.

Note: the words “forward” and “backward” are subjective.

When a plane curve v : [a,b] — R? is closed and simple (y(a) = (b), and the
curve doesn’t self intersect), then we say it is positively oriented if it is oriented
with counterclockwise direction and negatively oriented if it is oriented with
clockwise direction.

For example, the curve
~(t) = (cost,sint)

with 0 < ¢ < 27 is positively oriented, while the curve
o(t) = (sint,cost)

with 0 <t < 27 is negatively oriented.

19 Line integrals of vector fields

Definition 8. Let C be an oriented curve, v : [a,b] — R? a parametrization,
and

F(x7 y7 Z) = <P(x7 y? Z)? Q(xﬂ y? Z)? R(‘r7 y7 Z)>
a vector field. The integral of F' along C' is given by

b
LFd&:L@M&Q@+RMy:LFW®yﬂﬂﬁ

Note: if you use a parametrization in the opposite direction, the integral changes
sign.
If we let ,
t
() = LU

' (@)l
be the unit tangent vector, then the line integral above becomes

[ = () - (1) dt

V(t)
' (1)l

b
- / Fv(t) - L0 o)) e

:Lmﬂm
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The dot product F - T represents “how much is F' pointing in the direction in
which « is moving”. Therefore the integral can be interpreted as “how much
did the force field F' help v perform its trajectory”.

Example 12. Let F' = (1,0) and a : [0,1] = R?, 3:[0,1] = R?, v:[0,1] — R?
be given by

a(t) = (t,0)
p(t) = (0,t)
V(t) = (=t,0)

This means:

« is moving right
(8 is moving up
v is moving left
Since F' is pointing right, it is helping a perform its trajectory, it is not helping

nor preventing [ from performing its trajectory, and is pushing v against its
trajectory. From here we intuitively deduce that

/ F'ds is positive
«

/ Fds is zero
B

/ F'ds is negative
¥

This can be easily computed from the dot products:

t) - o/(t) = (1,0) - (1,0) =1
F(B(t) - B'(t) = (1,0) - (0,1) = 0
t '7/(t) =(1,0)-(-1,0) = -1

Basically:

e if a goes with the flow of F', the integral / F - ds is positive.

[e3%

e if v is swimming against the current, the integral / F' - ds is negative.
¥

The integral / F - ds is also called the work of F' along the trajectory.
c
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20 Exercises on line integrals

Exercise 22 Let F(x,y,z) = (—2y,2> + 3z, — 1) and C the curve with
parametrization v : [0,2] — R® given by

Find
F.ds
c
Using the change of variables
x(t) =1t -3
y(t) =2t
2(t) =13

we get
F(y(t)) = (—4t,t5 + 31> — 9,¢* — 4)

We also need
(1) = (2t,2,3t%)

Then
2
/ F.ds= / (—4t,t% 4+ 3t2 — 9,17 — 4) - (2,2, 3t%) dt
C 0
2

= / [—8t% +2t0 + 6% — 18 + 3¢* — 12¢?] dt
0

64 256 48 96
=+ 22 36+ — 32
gt g 36+ =3

Exercise 23 Let F(z,y,2z) = (2+1,z,y) and C the curve with parametriza-
tion 7 : [0,3] — R? given by

y(t) = (ef, =% t).

/F~ds
c

Find

Using the change of variables

x(t) = e
y(t) = —t*
z(t) =t
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we get
F(y(t) = (t+1,¢', ~t?)

We also need
V(t) = (ef,-2t,1)

Then
3
/F~ds:/ (t+1,et,—t2) - (e', —2t,1) dt
C 0

3
= / [te' + €' — 2te’ — ¢?] dt
0

= [—te' +2¢' —7/3] |1,
=-33+23-9-2

=—e—11
21 Fundamental Theorem of Calculus I1

The classic Fundamental Theorem of Calculus says that the integral of the
derivative of a function F(z) is the function F itself:

Something similar happens when we take the line integral of a gradient. Con-
sider a differentiable function f : D — R with D C R?® and its gradient
vector field Vf. Also take an oriented curve C C R? and a parametrization
7 : [a,b] — R3. Recall that by the chain rule, we have

L) = V) -/ 1)

Therefore

b
/ Vfods = / V(1) o/ (8) dt
C a
b q

- [ U a

= f(v(b) = f(v(a))

Theorem 4. Let D C R? be a region, f : D — R? a differentiable function,
C C R? an oriented curve with parametrization v : [a,b] — R3. Then

/C Vf-ds = f(4(b) - f(1(a))

In particular, the integral / Vf - ds does only depend on the endpoints of C'
c

and not on the trajectory.
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Exercise 24 Let F(x,y,z) = (x,cosy,e’) and C the curve with parametriza-
tion 7 : [0, 7] — R? given by

Y(t) = (V2 + Let ¢ cost).

/F~ds
c

curl(F) = (0,0,0),

Find

Note that

and the domain of F is R?, so F is conservative. To find the potential function,
we do partial integration,

fl@,y,2) = 2*/2+ g1y, 2)
f(z,y,2) =siny + ga(z, 2)
f(x7yaz) = ez + gg(x,y)

Matching terms, we get
f(z,y,2) =2%/2 +siny +e* +C

On the other hand, the endpoints of C' are

Therefore,
/CF~ds = f(r*V/m2 +1,e", —n2) — £(0,1,0)
=at7?+1)/2+ sin(e”z) fe - sin(1) — 1
Exercise 25 Show that the vector field
Fe = (e i)
is not conservative, even though it has zero curl.

Let C' C R? be the unit circle oriented counterclockwise. Take the parametriza-
tion y(t) = (cost,sint) with 0 <t < 27w. Then

—sint cost
F(y(t) = ,
(r(®)) <c052t—|—sin2t cos2t+sin2t>

= (—sint, cost)
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Also,
v (t) = (—sint, cost)

Therefore,
2
[ Feas= [ Py
C 0
27
= / (sin®t 4 cos? t) dt
0
27
:/‘lﬁ
0
=2r#0

If F was conservative, we would have F' = V f for some scalar function f(z,y).
By the Fundamental Theorem of Calculus, we would have

Aka=ﬂ%%D—ﬂw®)

:f(]-ao)*f(]-vo)
=0
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Part 11
Midterm Guide

22 Polar, cylindrical, and spherical coordinates

Exercise 26 Using polar coordinates, compute

0 0
/ / ydydz
—4 J—+/16—22

Hint: This is a quarter of the disk of radius 4

Exercise 27 Using polar coordinates, compute
3/V2 e /9-y?
/ / %y dady
0 Yy

Hint: This is a sector with angle w/4 of the circle of radius 3

Exercise 28 Using polar coordinates, compute

// x dxdy
B

where B C R? is the region in the first quadrant inside the circle 2%+ (y—3)% = 9

Hint: This is a quarter of the unit disk

Exercise 29 Using polar coordinates, show that

/ efg dr = V27

— 00

22442

Hint: The square of the integral on the left is // e 2 dA.
R2

Exercise 30 Let D C R? be the interior of the circle (x — 1) 4 (y — 1)* = 2.

Using polar coordinates, find
x
——dA
/ /D z? +y?

Hint: The notes have a section on how to describe a region like this in polar coor-
dinates.
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Exercise 31 Using cylindrical coordinates, compute

/ / / 22 dzdady

Hint: Deal separately with the x,y variables and the z variable. For cylindrical
coordinates, most of the time you don’t need to do anything to the z variable

Exercise 32 Using cylindrical coordinates, compute

1 1 pr/1-92
/ / / y? dedydz
0 —-1Jz

Hint: This is the region inside the cylinder 22+ y2 = 1, above the zy-plane, and
below the plane z = x. Verify this!!!

Exercise 33 Using spherical coordinates, compute

Vi—z2 4— wQ—y
/ / / y? dzdydx
Vi—z2

Hint: This is a portion of the ball of radius 2

Exercise 34 Using spherical coordinates, compute

i

where E is the region above the cone z = —+/x2 + y2 and inside the sphere
24y +22=25

Hint: The equation of the cone is ¢ = 3w /4 and the equation of the sphere is p =5
Exercise 35 Using spherical coordinates, compute
2
zx
e
BT TY
where E is the region below the plane z = 3 and above the cone z = \/22 + y2/V/3

Hint: The equation of the plane is p = 3/ cos ¢

Exercise 36 Using spherical coordinates, compute

J[[ =av

where E is the region inside the sphere x* +y* + (z —3)* =9

Hint: The notes have a section on how to describe a region like this in polar coor-
dinates.
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23 General changes of coordinates

Exercise 37 Using an appropriate change of variables, compute

// 22y dA
D

where D C R? is the region between the hyperbolas y = 2/x and y = 4/x and
the linesy=1andy=>5

Hint: The region can be described as

2<zxy<4
1<y<5

Exercise 38 Using an appropriate change of variables, compute

//DxQdA

where D C R? is the region between the hyperbolas y = 2/x and y = 3/x and
the lines y = x and y = 4z

Hint: The region can be described as

2<axy<3
1<y/z<4

Exercise 39 Using an appropriate change of variables, compute

/[ swaa

where D C R? is the parallelogram with vertices (2,0), (4,3), (3,4), (1,1).

Hint:  The sides of the parallogram have slopes 3/2 and —1

Exercise 40 Using an appropriate change of variables, compute

// Y_qa
p3Y+x

where D C R? is the parallelogram with vertices (—1,2), (2,1), (3,3), (0,4).

Hint: The sides of the parallogram have slopes 2 and —1/3

41



General change of coordinates

Exercise 41 Using an appropriate change of variables, compute

//D(JH—y)dA

where D C R? is the region bounded by

e thelinesy=—x andy = —x + 2
e the portion of the parabola y = x? with = > 0
e the portion of the parabola y = x(x — 2) with x > 1
Hint: If
r=u-+v

y=u" —v

then the region can be described as
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24 Curves and line integrals of scalar functions

Exercise 42 Find the curve of intersection of the cylinder (x—3)?+(z41)? =
9 and the plane 2x + 3y — 2z =5

Hint: First find z(t) and z(t) so that no matter how you define y(t), the curve you
get lives in the cylinder and wraps around once.

Exercise 43 Find parametrizations of the curves that form the sides of the
triangle Y, where ¥ is the intersection of the plane —x — 2y + z = 7 with the
first octant.

Hint: For points p and q, the line segment from p to q can be parametrized as
y(t) =p+tlg—p) with 0 < ¢ < 1.

Exercise 44 Find parametrizations of the curves that form the edges of the
surface ¥, where X is the portion of the sphere (z —3)2+ (y—2)>+ (2 —5)? = 36
with x > 3 and z > 5.

Hint: X is like the peel of an orange slice. The edges are two half-circles going from
(3,—4,5) to (3,8,5)

Exercise 45 Determine whether the curve
y(t) = (tsint,t* — 1,3t + cost)
passes through the point (7/2,7%/4 — 1,37 /2). If it does, determine
o the times at which it does

e the lines tangent to the curve at those times

e the speed of the curve at those times
Exercise 46 Determine whether the curve
y(t) = (1% — 2,13 — 2,5t + t2)
passes through the point (7,25,24). If it does, determine

e the times at which it does
e the lines tangent to the curve at those times

e the speed of the curve at those times
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Exercise 47 Determine whether the curve
() = (5+t,t% — 1,3t — 2t)
passes through the point (7,2,8). If it does, determine
e the times at which it does

e the lines tangent to the curve at those times

e the speed of the curve at those times

Exercise 48 Determine whether the curve
() = (2 + 2t + 1, 8% + 31> —t +2,¢° — Tt + 3)
passes through the point (4,5, —3). If it does, determine
e the times at which it does

e the lines tangent to the curve at those times

e the speed of the curve at those times
Exercise 49 Find the length of the curve
v(t) = (e' cost, e’ sint)
with 0 <t < 8r. Draw a sketch of the curve.
Exercise 50 Find the length of the curve
~(t) = (t —sint, 1 — cost)
with 0 <t < 4m. Draw a sketch of the curve.
Exercise 51 Find the length of the curve
v(t) = (2t, e +e7")

with —log2 <t <log2. Draw a sketch of the curve.

Exercise 52 Compute the line integral
/(w+3y+22)d8
c

where C' is the curve with parametrization + : [0,2] — R® given by

y(t) = (t—2,2t+3,5—1)
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Exercise 53 Compute the line integral
/ (—8x + 3y — 5z) ds
c

where C' is the curve with parametrization v : [-1,3] — R® given by

v(t) = (t* —4,t* — 2t — 5,3 — 1?)
Exercise 54 Compute the line integral
/ (x+y+2z)ds
c

where C' is the curve with parametrization v : [0,37/2] — R® given by

~(t) = (cost,sint,t)

Exercise 55 Compute the line integral

/ xds

c
where C' is the portion of the parabola y = x* + 1 between (0,1) and (2, 5)
Exercise 56 Compute the line integral
/ xe¥ ds

c
where C' is the line segment from (0, 2) to (5,0)
Exercise 57 Compute the line integral

/ \/2+4x + 8yds
c

where C' is the portion of the curve of intersection of the cylinder y = x? and
the plane x + y + z = 0 from (0,0,0) to (2,4, —6)
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25 Surfaces and surface integrals of scalar func-
tions

Exercise 58 Find a parametrization of the portion of the sphere x>+ 4 2% =
9 above the plane z = 3/2. Specify the domain and the expression of the
parametrization.

Exercise 59 Find a parametrization of the portion of the cylinder 2°+y* = 16
between the planes x +y + z = 0 and 2z + y — z = —10. Specify the domain
and the expression of the parametrization.

Exercise 60 Find a parametrization of the portion of the cone z = 1/3x2 + 3y>2
outside the sphere x*4+y* 4 (2z—2)? = 4 and inside the sphere x* +y*+ (2 —5)? =
25. Specify the domain and the expression of the parametrization.

Exercise 61 Find a parametrization of the portion of the graph z = sinx +
siny between the lines x = 0, x = 7w, y = x, and y = 7. Specify the domain and
the expression of the parametrization.

Exercise 62 For each of the previous problems, take your parametrization

(P(uv v) = (:L‘(’Lh U)v y(u,v), 2(u, U))

0 0
and consider the vector =2 x 2. Identify which side of the surface it comes

ou  Ov

out of. Construct a second parametrization of the same surface where the
corresponding vector points in the opposite direction.

Exercise 63 Using a parametrization and its Jacobian, find the area of the
portion of the plane 5z + 3y +4z = 60 in the first octant (z,y,z > 0). Assumme
a metal lamina has this shape and its density is given by p(z,y,z) = sinz + 3.
Find its mass.

Exercise 64 Find the area of the portion of the paraboloid x = 9 — y* — 2°
with © > —16. Assume a metal lamina has this shape and its density is given
by p(x,y,z) = x —y + 21. Find its mass.

//Z(z2+x+3)d5’

where ¥ is the portion of the sphere 2* + y? + 2% = 16 above the plane z = —2.

Exercise 65 Find

Exercise 66 Find

//(1;2+3x+2y2—2y+22+3)d5
b
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where X is the portion of the cone z = \/3x2 + 3y2 outside the sphere 2> +y* +
(z — 2)? = 4 and inside the sphere 2* + 3> 4 (z — 5)% = 25.

Exercise 67 Consider the surface ¥ C R® with parametrization
@ :[0,27] x [0,27] — R3

given by
o(u,v) = ((3 + cosv) cosu, (3 + cosv) sinu, sinv)

Describe the surface 3 and find its area. Compute

//(m+2y+z2+3)ds
>

//Z(xz+y)dS

where ¥ C R? is the helicoid with parametrization

Exercise 68 Compute

o(u,v) = (ucosv,usinv,v)

with 1 <u <3,0<v<A4r.
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26 Vector fields, curl, and divergence

Exercise 69 Find the curl and divergence of the vector field

Flz,y) = (z,y).

Determine if the vector field is conservative or not. If it is, find a potential
function.

Exercise 70 Find the curl and divergence of the vector field

F(z,y) = (y,x).

Determine if the vector field is conservative or not. If it is, find a potential
function.

Exercise 71 Find the curl and divergence of the vector field

F(x’y) = <—y,$>.

Determine if the vector field is conservative or not. If it is, find a potential
function.

Exercise 72 Find the curl and divergence of the vector field
F(z,y) = (ye™, ze™).

Determine if the vector field is conservative or not. If it is, find a potential
function.

Exercise 73 Find the curl and divergence of the vector field
F(x,y,2) = (2zyz, 22, 2y2).

Determine if the vector field is conservative or not. If it is, find a potential
function.

Exercise 74 Find the curl and divergence of the vector field
F(z,y,2) = (yz*, x2% 2zyz2).

Determine if the vector field is conservative or not. If it is, find a potential
function.

Exercise 75 Find the curl and divergence of the vector field
F(z,y,z) = (e + z,8inz — y,x + y cos 2).

Determine if the vector field is conservative or not. If it is, find a potential
function.
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Exercise 76 Find a vector field F(x,y) that has positive curl at the point
(0,0) and negative curl at the point (10, 0).

Exercise 77 Find a vector field F(z,y) that has positive divergence at the
point (0,0) and negative divergence at the point (0, 10).

Exercise 78 Find a vector field F(x,y) that has positive curl at the point
(1,1) and negative divergence at the point (—1,—1).

Exercise 79 Find a vector field F(x,y) with the property that:

e The flow-line that starts at the point (1,0) passes through the point (2,0)
at a later time.

e The flow-line that starts at the point (0, 1) passes through the point (0, 2)

at a later time.

Exercise 80 Find a vector field F(x,y) with the property that:

e The flow-line that starts at the point (1,0) passes through the point (2,0)
at a later time.

e The flow-line that starts at the point (0,2) passes through the point (0,1)

at a later time.

Exercise 81 Find a vector field F(x,y) with the property that:

e The flow-line that starts at the point (1,0) passes through the point (0, 1)
at a later time.

e The flow-line that starts at the point (2,0) passes through the point (0, 2)

at a later time.

Exercise 82 Sketch a vector field F(x,y) with the property that:

o The flow-line that starts at the point (2,0) is at the point (0,1) after one
unit of time.

o The flow-line that starts at the point (0,2) is at the point (1,0) after one
unit of time.
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27 Line integrals of vector fields

Exercise 83 Let C C R® be the curve with parametrization ~ : [0,1] — R3
given by
y(t) = (t+ 3, t4, 2t + 1% - 3).

Compute
/(—y,a:—|—2,z—|— 1) - ds
C

Exercise 84 Let C C R® be the curve with parametrization v : [0,7] — R?
given by
v(t) = (sint, e, cost).

Compute
/<x+y7y—|—z7z+x> -ds
c

Exercise 85 Let C C R? be the curve with parametrization ~v:[0,1] — R3
given by
Y(t) = (% cos(dnt), 1 + 12,87 + t* + 7).

Compute

/C [(yz + 22) dz + (z2 + 2) dy + (zy + y + 32°) dz]

Exercise 86 Let C C R® be the piece of the parabola x = y* from (0,0) to

(4,2). Compute
/ [eyz der + x dy
C

Exercise 87 Let C' C R? be the unit circle in the xy-plane travelled counter-
clockwise when viewed from above. Compute

/ (6”2,sin(y2),cos(z?’)> -ds
c

Exercise 88 Let C' C R? be portion from (—2,0,2) to (2,0, —2) of the curve
of intersection of the plane x +y+ z = 0 and the cylinder x> 4+ 2> = 8. Compute

/<x+z,cosy,ez+x> -ds
c

Exercise 89 Let C C R® be the curve with parametrization ~ : [0,1] — R?
given by
Y1) = (12 + 2t — 1, (3+6)V/12 + 1,¢t + 22).
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Compute
/ (e%(z —1),zcosy,e” +siny) - ds
c

Exercise 90 Let C C R® be the curve with parametrization v : [0,7/2] — R3
given by
~(t) = (2sint,sint, 3 cost).

Compute
/ [yz dx + zy dy + x2z dz]
c
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28 Stokes Theorem

Exercise 91 Let C C R? be the curve of intersection...
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