Je bent je ingevulde velden bij deze pagina aan het verwijderen. Ben je zeker dat je dit wilt doen?
You are erasing your filled-in fields on this page. Are you sure that is what you want?
Nieuwe Versie BeschikbaarNew Version Available
Er is een update van deze pagina. Als je update naar de meest recente versie, verlies je mogelijk je huidige antwoorden voor deze pagina. Hoe wil je verdergaan ?
There is an updated version of this page. If you update to the most recent version, then your current progress on this page will be erased. Regardless, your record of completion will remain. How would you like to proceed?
Just like we use polar, cylindrical, and spherical integrals to solve integrals, we can
use any other coordinate system. For simplicity, we restrict ourselves to dimension 2,
but the concepts make sense in any dimensions.
If we write \(x\) and \(y\) in terms of the coordinates \(u\) and \(v\), and vice-versa, the Jacobian of
this change of coordinates is given by the absolute value of the determinant of the
matrix of partial derivatives.
where \(R\) is the region in the first quadrant between the hyperbolas \(y = 1/x\) and \(y = 5 / x\),
and between the lines \(y = x/ 3\) and \(y = 2x\).