Je bent je ingevulde velden bij deze pagina aan het verwijderen. Ben je zeker dat je dit wilt doen?
You are erasing your filled-in fields on this page. Are you sure that is what you want?
Nieuwe Versie BeschikbaarNew Version Available
Er is een update van deze pagina. Als je update naar de meest recente versie, verlies je mogelijk je huidige antwoorden voor deze pagina. Hoe wil je verdergaan ?
There is an updated version of this page. If you update to the most recent version, then your current progress on this page will be erased. Regardless, your record of completion will remain. How would you like to proceed?
Surfaces and surface integrals of scalar functions
1 Surfaces
A parametrized surface is a map \(\varphi : U \to \mathbb {R}^3\) with \(U \subset \mathbb {R}^2\) a region in the plane.
Sometimes, we call the image of \(\varphi \) the surface (the object in the space) and call \(\varphi \) the
parametrization.
The graph of a function \(f (x,y)\) of two variables, is the set \(\{ (x,y,z ) \in \mathbb {R}^3 \vert z = f(x,y) \}\). It admits the parametrization \(\varphi : \mathbb {R}^2 \to \mathbb {R}^3\)
given by
\[ \varphi (u,v) = (u,v, f(u,v)) \]
The cylinder \(x^2 + y^2 = 1\) is a surface that admits the parametrization \(\varphi : [0, 2 \pi ] \times \mathbb {R} \to \mathbb {R}^3\) given by
\[ \varphi (u,v) = ( \cos u , \sin u ,v ) \]
The sphere \(x^2 + y^2 + z ^2 = 1\) is a surface that admits the parametrization \(\varphi : [0, 2 \pi ] \times [0, \pi ] \to \mathbb {R}^3\) given by
\[ \varphi (u,v) = ( \cos u \sin v , \sin u \sin v , \cos v ) \]
Assume a plane curve \(\gamma : [a,b] \to \mathbb {R}^2\) given by \(\gamma (t) = (\gamma _ 1 (t) , \gamma _2 (t))\) satisfies \(\gamma _1 > 0 \). We can rotate it around the vertical axis
to get a surface of revolution. This surface admits the parametrization \(\varphi : [0, 2 \pi ] \times [a,b] \to \mathbb {R}^3 \) given by
\[ \text {area} (\varphi ) = \iint _U \Big \vert \frac {\partial \varphi }{\partial u } \times \frac {\partial \varphi }{\partial u } \Big \vert \, du dv \]
2 Surface integrals of scalar functions
Let \(\Sigma \subset \mathbb {R}^3\) be a surface, \(\varphi : U \to \mathbb {R}^3\) a parametrization of \(\Sigma \), and \(f : \mathbb {R}^3 \to \mathbb {R}\) a continuous function. The integral of \(f\)
over \(\Sigma \) is defined as
If \(f (\varphi (u,v)) > 0 \), the integral above can be interpreted as the mass of a thin metal sheet with shape
\(\Sigma \) and density \(f\).
Note: the above integral is independent of the parametrization. Later we will consider
surface integrals of vector fields. They will change sign if we change the orientation of
the parametrization we use.
Let \(\Sigma \subset \mathbb {R}^3\) be the portion of the paraboloid \(z = 4 - x^2 - y^2\) above the \(xy\)-plane. Find the area of \(\Sigma \)
Inspired by cylindrical coordinates, we can use the parametrization \(\varphi : [0,2] \times [0, 2 \pi ] \to \mathbb {R}^3 \) given
by
\[ \varphi (r,\theta ) = ( r \cos \theta , r \sin \theta , 4 - r^2 ) \]
where we used the substitution \(u = 4r^2 +1\) with \(u ' = 8r \) and \(1 \leq u \leq 17\)
Let \(\Sigma \subset \mathbb {R}^3\) be the portion of the sphere \(x^2 + y^2 + z^2 = 1 \) above the cone \(z = \frac {1}{\sqrt {3}} \sqrt {x^2 + y^2 } \). Find the area of \(\Sigma \) and its average
height.
Inspired by spherical coordinates, we can use the parametrization \(\varphi : [0,2\pi ] \times [0, \pi / 3 ] \to \mathbb {R}^3 \) given
by
\[ \varphi ( u , v ) = ( \cos u \sin v , \sin u \sin v , \cos v ) \]
Then
\begin{gather*} \frac {\partial \varphi }{\partial u } = ( - \sin u \sin v, \cos u \sin v , 0 ) \\ \frac {\partial \varphi }{\partial v } = ( \cos u \cos v , \sin u \cos v , - \sin v ) \end{gather*}
Taking cross product,
\[ \frac {\partial \varphi }{\partial u } \times \frac {\partial \varphi }{\partial v } = ( - \cos u \sin ^2 v , - \sin u \sin ^2 v , - \sin v \cos v ) \]
Note that the height of the point \(\varphi (u,v) \) is given by the third coordinate, which is \(\cos v\). To
compute the average, we integrate this quantity and divide over the area:
Let \(\Sigma \subset \mathbb {R}^3\) be the portion of the cone \( z = \sqrt { x^2 + y^2 } \) between the cylinders \( x^2 + y^2 =1 \) and \(x^2 + y^2 = 9\). Find the
area of \(\Sigma \). Assume a metal sheet with this shape has density \(\rho (x,y,z) = e^{z^2} \). Find its mass.
Inspired by spherical coordinates, we can use the parametrization \(\varphi : [1,3] \times [0, 2 \pi ] \to \mathbb {R}^3 \) given
by
\[ \varphi ( u , v ) = ( u \cos v , u \sin v , u ) \]
Then
\begin{gather*} \frac {\partial \varphi }{\partial u } = ( \cos v , \sin v , 1 ) \\ \frac {\partial \varphi }{\partial v } = ( -u \sin v , u \cos v , 0 ) \end{gather*}
Taking cross product,
\[ \frac {\partial \varphi }{\partial u } \times \frac {\partial \varphi }{\partial v } = ( - u \cos v , - u \sin v , u ) \]
Some surfaces cannot be nicely covered by a single parametrization. It is common to
need more than one parametrization.
A metal sheet has shape \(\Sigma \), where \(\Sigma \) consists of the portion of the cylinder \(x^2 + y^2 = 4\) between
the planes \(x + y + z = 0\) and \(z=3\), and the portion of the sphere \(x^2 + y^2 + (z-3)^2 = 4\) above the plane \(z = 3\). It has density \(\rho (x,y,z) = 5 - z\).
Find its mass.
Inspired by cylindrical coordinates, for the cylinder part we can use the
parametrization \(\varphi : U \to \mathbb {R}^3\) given by
\[ \varphi (u , v) = (2 \cos u , 2 \sin u , v) \]
with \(U \) given by the restrictions
\begin{gather*} 0 \leq u \leq 2 \pi \\ - 2 \cos u - 2 \sin u \leq v \leq 3 \end{gather*}
The derivatives of \(\varphi \) are
given by
\begin{gather*} \frac {\partial \varphi }{\partial u } = ( -2 \sin u , 2 \cos u , 0 ) \\ \frac {\partial \varphi }{\partial v } = (0,0,1) \end{gather*}
\begin{align*} & \int _{0} ^{2 \pi } \int _{-2 \cos u - 2 \sin u} ^3 (5 - v) 2 \, \, dv du \\ & = \int _{0} ^{2 \pi } [ 5 ( 3 + 2 \cos u + 2 \sin u ) - 9 + (2 \cos u + 2 \sin u ) ^2 ] \, du \\ & = 30 \pi - 18 \pi + 4 \int _{0} ^{2 \pi } (\cos ^2 u + \sin ^2 u + 2 \cos u \sin u ) \, du \\ & = 20 \pi \end{align*}
Inspired by spherical coordinates, for the sphere part we can use the parametrization \(\psi : [0, 2 \pi ] \times [0, \pi /2 ] \to \mathbb {R}^3\)
given by
\[ \psi (u , v) = (2 \cos u \sin v , 2 \sin u \sin v , 3 + 2 \cos v ) \]
The derivatives of \(\psi \) are given by
\begin{gather*} \frac {\partial \psi }{\partial u } = ( -2 \sin u \sin v , 2 \cos u \sin v , 0 ) \\ \frac {\partial \psi }{\partial v } = ( 2 \cos u \cos v , 2 \sin u \cos v , - 2 \sin v) \end{gather*}
Then the Jacobian is given by
\[ \Big \vert \frac {\partial \psi }{\partial u } \times \frac {\partial \psi }{\partial v } \Big \vert = 4 \sin v \]
Then the
integral over this piece becomes
\begin{align*} & \int _{0} ^{2 \pi } \int _{0} ^{\pi /2 } (5 - 3 - 2 \cos v ) (4 \sin v) \, \, dv du \\ & = 16 \pi \int _0 ^{\pi /2} ( 1 - \cos v ) \sin v \, dv \\ & = 8 \pi \end{align*}