Je bent je ingevulde velden bij deze pagina aan het verwijderen. Ben je zeker dat je dit wilt doen?
You are erasing your filled-in fields on this page. Are you sure that is what you want?
Nieuwe Versie BeschikbaarNew Version Available
Er is een update van deze pagina. Als je update naar de meest recente versie, verlies je mogelijk je huidige antwoorden voor deze pagina. Hoe wil je verdergaan ?
There is an updated version of this page. If you update to the most recent version, then your current progress on this page will be erased. Regardless, your record of completion will remain. How would you like to proceed?
Find the curve of intersection of the cylinder \((x - 3) ^2 + (z + 1 )^2 = 9\) and the plane \(2x + 3y - 2z = 5\)
First find \(x(t)\) and \(z(t)\) so
that no matter how you define \(y(t)\), the curve you get lives in the cylinder and wraps
around once.
Find parametrizations of the curves that form the sides of the triangle \(\Sigma \), where \(\Sigma \) is
the intersection of the plane \(- x - 2y + z = 7 \) with the first octant.
For points \(p\) and \(q\), the line
segment from \(p\) to \(q\) can be parametrized as \(\gamma (t) = p + t (q - p)\) with \(0 \leq t \leq 1\).
Find parametrizations of the curves that form the edges of the surface \(\Sigma \), where \(\Sigma \) is
the portion of the sphere \( (x- 3) ^2 + (y - 2 ) ^2 + (z- 5 ) ^2 = 36 \) with \(x \geq 3\) and \(z \geq 5\).
\(\Sigma \) is like the peel of an orange slice. The
edges are two half-circles going from \((3, -4, 5)\) to \((3,8,5)\)
Determine whether the curve
\[ \gamma (t) = ( t \sin t , t^2 -1 , 3t + \cos t ) \]
passes through the point \((\pi / 2 , \pi ^2 /4 - 1 , 3 \pi / 2 )\). If it does, determine