Je bent je ingevulde velden bij deze pagina aan het verwijderen. Ben je zeker dat je dit wilt doen?
You are erasing your filled-in fields on this page. Are you sure that is what you want?
Nieuwe Versie BeschikbaarNew Version Available
Er is een update van deze pagina. Als je update naar de meest recente versie, verlies je mogelijk je huidige antwoorden voor deze pagina. Hoe wil je verdergaan ?
There is an updated version of this page. If you update to the most recent version, then your current progress on this page will be erased. Regardless, your record of completion will remain. How would you like to proceed?
Surfaces and surface integrals of scalar functions
1 Surfaces and surface integrals of scalar functions
Find a parametrization of the portion of the sphere \(x^2 + y^2 + z^2 = 9 \) above the plane \(z = 3/2\). Specify the
domain and the expression of the parametrization.
Find a parametrization of the portion of the cylinder \(x^2 + y^2 = 16 \) between the planes \( x+ y + z = 0\) and \(2x + y - z = - 10\).
Specify the domain and the expression of the parametrization.
Find a parametrization of the portion of the cone \( z = \sqrt {3 x^2 + 3 y^2 } \) outside the sphere \(x^2 + y^2 + (z- 2)^2 = 4\) and inside
the sphere \(x^2 + y^2 + (z- 5)^2 = 25\). Specify the domain and the expression of the parametrization.
Find a parametrization of the portion of the graph \( z = \sin x + \sin y \) between the lines
\(x= 0\), \(x = \pi \), \(y = x\), and \(y = \pi \). Specify the domain and the expression of the parametrization.
For each of the previous problems, take your parametrization
\[ \varphi (u,v) = (x(u,v), y(u,v) , z(u,v)) \]
and consider the
vector \(\frac {\partial \varphi }{\partial u } \times \frac {\partial \varphi }{\partial v}\). Identify which side of the surface it comes out of. Construct a second
parametrization of the same surface where the corresponding vector points in the
opposite direction.
Using a parametrization and its Jacobian, find the area of the portion of the plane \(5x + 3y + 4z = 60 \)
in the first octant (\(x, y, z \geq 0\)). Assumme a metal lamina has this shape and its density is given
by \(\rho (x,y,z) = \sin x + 3\). Find its mass.
Find the area of the portion of the paraboloid \(x = 9 - y^2 - z^2\) with \(x \geq - 16\). Assume a metal lamina has
this shape and its density is given by \(\rho (x,y,z) = x - y + 21\). Find its mass.
Find
\[ \iint _{\Sigma } (z^2 +x + 3 ) \, dS \]
where \(\Sigma \) is the portion of the sphere \( x^2 + y^2 + z^2 = 16\) above the plane \(z = -2\).
where \(\Sigma \) is the portion of the cone \( z = \sqrt {3 x^2 + 3 y^2 } \) outside the sphere \(x^2 + y^2 + (z- 2)^2 = 4\) and inside the sphere \(x^2 + y^2 + (z- 5)^2 = 25\).
Consider the surface \(\Sigma \subset \mathbb {R}^3\) with parametrization